Monday 25 February 2019

Moving average gaussian window


Variações na média móvel O filtro de média móvel é mais ou menos perfeito para suavizar dados na presença de ruído, se as informações úteis em seus dados estiverem completamente no domínio do tempo. Nesse caso, você não se preocupa com o seu desempenho bastante pobre no domínio da freqüência. A Figura 1 mostra as respostas de impulso, passo e freqüência do filtro básico de média móvel (com três amostras extras em ambos os lados que não fazem parte das respostas de impulso e de passo, para maior clareza). Às vezes, no entanto, você tem que trabalhar com dados para os quais ambos os domínios são importantes. Para esses casos, existem versões ponderadas da média móvel que são mais ou menos equivalentes no domínio do tempo, mas que têm um desempenho muito melhor no domínio da freqüência. Média móvel repetida A primeira coisa que você pode fazer para melhorar a resposta de freqüência da média móvel é aplicá-la várias vezes. Após duas repetições, isso equivale a uma ponderação triangular dos coeficientes (Figura 2). Uma vez que aplicar o mesmo filtro duas vezes duplica seu efeito, o primeiro lobo lateral da resposta de freqüência é apenas metade do que o da Figura 1. A razão para a forma triangular é que a média móvel é uma convolução com um pulso retangular. Aplicá-lo duas vezes provoca uma convolução deste pulso retangular com si mesmo, resultando em uma janela triangular para o filtro combinado. Note-se que Ive tomado o mesmo comprimento do filtro na Figura 2 como na Figura 1, Deslocando assim o primeiro zero da resposta de freqüência. Uma verdadeira convolução do filtro retangular original teria resultado em um filtro mais longo e teria mantido os zeros exatamente no mesmo lugar, é claro. Se o filtro de média móvel for repetido várias vezes, seus coeficientes convergem para uma janela gaussiana (Figura 3) por causa do teorema do limite central. Naturalmente, um gaussiano real se estende infinitamente em ambas as direções, então não há outra opção do que cortá-la em algum ponto (ou talvez multiplicá-lo com uma segunda janela). Adicionalmente, o desvio padrão do Gaussiano tem de ser escolhido. Para esta ilustração (e para a implementação do Designer de filtro), adotei as configurações padrão do MATLAB. Na prática, você pode querer simplesmente aplicar repetidamente a média móvel em vez de aplicar uma janela gaussiana. Quando implementada recursivamente, a média móvel é muito eficiente. Enquanto a janela gaussiana deve ser implementada por convolução. Janela Blackman Outra possibilidade é escolher uma das funções de janela clássica que são usadas para filtros de janelas-sinc, e usá-lo como um kernel de filtro (veja a página excelente de Wikipedia em funções de janela). Como exemplo, Ive escolheu a janela Blackman (Figura 4). Isto melhora ainda mais a atenuação da banda de paragem, ao mesmo tempo que mostra uma resposta de domínio de tempo suave sem qualquer toque ou ultrapassagem. Em conclusão, se você precisa suavizar os dados, mas precisa de um melhor desempenho de freqüência do que a média móvel básica tem para oferecer, várias alternativas estão disponíveis. Filter Design Tool Este artigo é complementado com uma ferramenta Filter Design. Experimente as diferentes funções da janela eo comprimento do filtro e veja o efeito na resposta de freqüência. Experimentá-lo agora O cientista e engenheiros guia para processamento de sinal digital Por Steven W. Smith, Ph. D. Filtros de Filtros Móveis Filtros do Filtro de Média Móvel Em um mundo perfeito, os designers de filtros só teriam que lidar com informações de domínio de tempo ou de domínio de freqüência codificadas, mas nunca uma mistura dos dois no mesmo sinal. Infelizmente, existem algumas aplicações em que ambos os domínios são simultaneamente importantes. Por exemplo, os sinais de televisão caem nesta categoria desagradável. As informações de vídeo são codificadas no domínio do tempo, ou seja, a forma da forma de onda corresponde aos padrões de brilho na imagem. No entanto, durante a transmissão, o sinal de vídeo é tratado de acordo com a sua composição de frequência, tal como a sua largura de banda total, como as ondas portadoras para a cor do amplificador de som são adicionadas, a restauração do amplificador de eliminação da componente de corrente contínua, etc. É melhor compreendida no domínio da frequência, mesmo se a informação de sinais é codificada no domínio do tempo. Por exemplo, o monitor de temperatura em uma experiência científica pode estar contaminado com 60 hertz das linhas de energia, 30 kHz a partir de uma fonte de alimentação comutada, ou 1320 kHz de uma estação de rádio AM local. Os parentes do filtro de média móvel têm um melhor desempenho no domínio da frequência, e podem ser úteis nestas aplicações de domínio misto. Os filtros de média móvel de passagem múltipla envolvem passar o sinal de entrada através de um filtro de média móvel duas ou mais vezes. A Figura 15-3a mostra o núcleo de filtro global resultante de uma, duas e quatro passagens. Duas passagens são equivalentes à utilização de um kernel de filtro triangular (um núcleo de filtro retangular convolveu-se consigo mesmo). Depois de quatro ou mais passagens, o kernel de filtro equivalente parece um Gaussiano (lembre-se do Teorema do Limite Central). Como mostrado em (b), passagens múltiplas produzem uma resposta de passo em forma de s, em comparação com a linha reta da passagem simples. As respostas de freqüência em (c) e (d) são dadas pela Eq. 15-2 multiplicado por si para cada passagem. Isto é, cada vez que a convolução do domínio resulta numa multiplicação dos espectros de frequência. A Figura 15-4 mostra a resposta em frequência de dois outros familiares do filtro de média móvel. Quando um Gaussiano puro é usado como um kernel de filtro, a resposta de freqüência é também um Gaussiano, como discutido no Capítulo 11. O Gaussiano é importante porque é a resposta de impulso de muitos sistemas naturais e artificiais. Por exemplo, um breve pulso de luz que entra numa longa linha de transmissão de fibra óptica irá sair como um pulso Gaussiano, devido aos diferentes caminhos tomados pelos fótons dentro da fibra. O kernel de filtro gaussiano também é usado extensivamente no processamento de imagens porque possui propriedades únicas que permitem a rápida convolução bidimensional (ver Capítulo 24). A segunda resposta de freqüência na Fig. 15-4 corresponde a usar uma janela de Blackman como um kernel de filtro. (A janela do termo não tem nenhum significado aqui é simplesmente parte do nome aceitado desta curva). A forma exata da janela de Blackman é dada no Capítulo 16 (Equação 16-2, Fig. 16-2) no entanto, se parece muito com um Gaussiano. Como são esses parentes do filtro de média móvel melhor do que o filtro de média móvel em si Três maneiras: Primeiro, e mais importante, esses filtros têm melhor atenuação de banda de interrupção do que o filtro de média móvel. Em segundo lugar, os grãos de filtro diminuem para uma amplitude menor perto das extremidades. Lembre-se de que cada ponto no sinal de saída é uma soma ponderada de um grupo de amostras da entrada. Se o kernel do filtro diminui, as amostras no sinal de entrada que estão mais distantes recebem menos peso do que as próximas. Em terceiro lugar, as respostas de passo são curvas suaves, ao invés da linha recta abrupta da média móvel. Estes dois últimos são geralmente de benefício limitado, embora você possa encontrar aplicações onde eles são verdadeiras vantagens. O filtro de média móvel e seus parentes são todos aproximadamente o mesmo na redução de ruído aleatório, mantendo uma resposta passo agudo. A ambiguidade reside na forma como o tempo de subida da resposta ao passo é medido. Se o tempo de subida é medido de 0 a 100 do passo, o filtro de média móvel é o melhor que você pode fazer, como mostrado anteriormente. Em comparação, medir o tempo de subida de 10 para 90 torna a janela de Blackman melhor do que o filtro de média móvel. O ponto é, isto é apenas disputas teóricas considerar esses filtros iguais neste parâmetro. A maior diferença entre esses filtros é a velocidade de execução. Usando um algoritmo recursivo (descrito a seguir), o filtro de média móvel será executado como relâmpagos em seu computador. Na verdade, é o mais rápido filtro digital disponível. Várias passagens da média móvel serão correspondentemente mais lentas, mas ainda assim muito rápidas. Em comparação, os filtros Gaussiano e Blackman são extremamente lentos, porque eles devem usar convolução. Pense um fator de dez vezes o número de pontos no kernel do filtro (com base na multiplicação sendo cerca de 10 vezes mais lento que a adição). Por exemplo, espere um Gaussiano de 100 pontos ser 1000 vezes mais lento do que uma média móvel usando recursão. Filtro Médio de Movimentação (Filtro MA) Carregando. O filtro de média móvel é um simples filtro Low Pass FIR (Finite Impulse Response) comumente usado para suavizar uma matriz de dados / sinal amostrados. Ele toma M amostras de entrada de cada vez e pegue a média dessas M-amostras e produz um único ponto de saída. É uma estrutura de LPF (Low Pass Filter) muito simples que é útil para cientistas e engenheiros para filtrar o componente ruidoso indesejado dos dados pretendidos. À medida que o comprimento do filtro aumenta (o parâmetro M) a suavidade da saída aumenta, enquanto que as transições nítidas nos dados são feitas cada vez mais sem corte. Isto implica que este filtro tem excelente resposta no domínio do tempo, mas uma resposta de frequência pobre. O filtro MA executa três funções importantes: 1) Toma M pontos de entrada, calcula a média desses pontos M e produz um único ponto de saída 2) Devido à computação / cálculos envolvidos. O filtro introduz uma quantidade definida de atraso 3) O filtro age como um Filtro de Passagem Baixa (com fraca resposta de domínio de freqüência e uma boa resposta de domínio de tempo). Código Matlab: O código matlab seguinte simula a resposta no domínio do tempo de um filtro M-point Moving Average e também traça a resposta de freqüência para vários comprimentos de filtro. Time Domain Response: No primeiro gráfico, temos a entrada que está entrando no filtro de média móvel. A entrada é barulhenta e nosso objetivo é reduzir o ruído. A figura a seguir é a resposta de saída de um filtro de média móvel de 3 pontos. Pode-se deduzir da figura que o filtro de média móvel de 3 pontos não tem feito muito na filtragem do ruído. Aumentamos os toques do filtro para 51 pontos e podemos ver que o ruído na saída reduziu muito, o que é mostrado na próxima figura. Nós aumentamos as derivações para 101 e 501 e podemos observar que mesmo que o ruído seja quase zero, as transições são drasticamente ditas (observe a inclinação em ambos os lados do sinal e compare-as com a transição ideal da parede de tijolo em Nossa entrada). Resposta de Freqüência: A partir da resposta de freqüência pode-se afirmar que o roll-off é muito lento ea atenuação de banda de parada não é boa. Dada esta atenuação de banda de parada, claramente, o filtro de média móvel não pode separar uma banda de freqüências de outra. Como sabemos que um bom desempenho no domínio do tempo resulta em mau desempenho no domínio da freqüência, e vice-versa. Em suma, a média móvel é um filtro de suavização excepcionalmente bom (a ação no domínio do tempo), mas um filtro passa-baixa excepcionalmente ruim (a ação no domínio da freqüência) Links externos: Livros recomendados: Barra lateral principal

No comments:

Post a Comment